A bromodomain–DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT
نویسندگان
چکیده
Bromodomains are critical components of many chromatin modifying/remodelling proteins and are emerging therapeutic targets, yet how they interact with nucleosomes, rather than acetylated peptides, remains unclear. Using BRDT as a model, we characterized how the BET family of bromodomains interacts with site-specifically acetylated nucleosomes. Here we report that BRDT interacts with nucleosomes through its first (BD1), but not second (BD2) bromodomain, and that acetylated histone recognition by BD1 is complemented by a bromodomain-DNA interaction. Simultaneous DNA and histone recognition enhances BRDT's nucleosome binding affinity and specificity, and its ability to localize to acetylated chromatin in cells. Conservation of DNA binding in bromodomains of BRD2, BRD3 and BRD4, indicates that bivalent nucleosome recognition is a key feature of these bromodomains and possibly others. Our results elucidate the molecular mechanism of BRDT association with nucleosomes and identify structural features of the BET bromodomains that may be targeted for therapeutic inhibition.
منابع مشابه
The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins
The Bromodomain and Extra-Terminal Domain (BET) family of proteins is characterized by the presence of two tandem bromodomains and an extra-terminal domain. The mammalian BET family of proteins comprises BRD2, BRD3, BRD4, and BRDT, which are encoded by paralogous genes that may have been generated by repeated duplication of an ancestral gene during evolution. Bromodomains that can specifically ...
متن کاملInsights into role of bromodomain, testis-specific (Brdt) in acetylated histone H4-dependent chromatin remodeling in mammalian spermiogenesis.
Mammalian spermiogenesis is of considerable biological interest especially due to the unique chromatin remodeling events that take place during spermatid maturation. Here, we have studied the expression of chromatin remodeling factors in different spermatogenic stages and narrowed it down to bromodomain, testis-specific (Brdt) as a key molecule participating in chromatin remodeling during rat s...
متن کاملThe first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation.
Brdt is a testis-specific member of the distinctive BET sub-family of bromodomain motif-containing proteins, a motif that binds acetylated lysines and is implicated in chromatin remodeling. Its expression is restricted to the germ line, specifically to pachytene and diplotene spermatocytes and early spermatids. Targeted mutagenesis was used to generate mice carrying a mutant allele of Brdt, Brd...
متن کاملInhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery
As a conserved protein interaction module that recognizes and binds to acetylated lysine, bromodomain (BRD) contains a deep, largely hydrophobic acetyl lysine binding site. Proteins that share the feature of containing two BRDs and an extra-terminal domain belong to BET family, including BRD2, BRD3, BRD4 and BRDT. BET family proteins perform transcription regulatory function under normal condit...
متن کاملBromodomain-dependent stage-specific male genome programming by Brdt.
Male germ cell differentiation is a highly regulated multistep process initiated by the commitment of progenitor cells into meiosis and characterized by major chromatin reorganizations in haploid spermatids. We report here that a single member of the double bromodomain BET factors, Brdt, is a master regulator of both meiotic divisions and post-meiotic genome repackaging. Upon its activation at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016